FST 3-8 Notes

Topic: Inverses of Functions

GOAL:

Define inverse of a function, discuss how to determine an inverse of a function from its graph or by graphing, and then examine the skill of finding an equation of an inverse.

SPUR Objectives

- B Find inverses of functions.
- F Identify properties of inverses of functions.
- I Recognize functions and their properties from their graphs.
- K Graph inverses of functions.

Mental Math

What operation undoes each action?

- a. adding 2 to a number
- b. multiplying a number
- c. squaring a positive

Vocabulary

inverse of a function identity function

Function
-for every x-value there is exactly
one y-value
- can 4 have repeating x-values
- vertical line test can only touch
graph in one spot

a) subtracting 2/3 b) dividing by 17/2

c) square root

Inverse of a function: the relation in which the components of all ordered pairs of the function are switched

* every function has an inverse, but not all inverses are functions.

Notation: the inverse of
$$f(x)$$
 is denoted $f^{-1}(x)$
* $f^{-1}(x) \neq \frac{1}{f(x)}$ even though $x^{-1} = \frac{1}{x}$

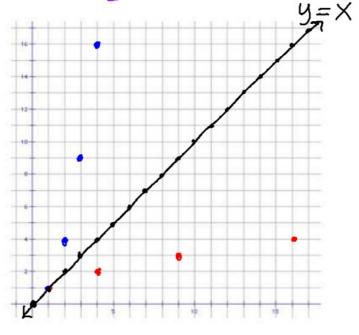
Example 1: Let $h = \{(1, 1), (2, 4), (3, 9), (4, 16)\}$

a) Is h a function? Explain.

Yes, no repeating x-values

b) Describe the inverse of h.

c) Is the inverse a function? Explain.


Yes, no repeating x-values

d) Describe h and its inverse in words.

h: Square x to get y
h-1: Square root x to get y

e) Plot the points for h and its inverse. What do you notice?

reflected over the line y=X

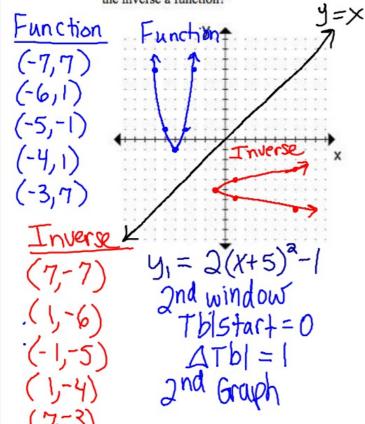
Example 2: Consider the function
$$y = 2(x+5)^{0} - 1$$
.

a) Describe the graph of the function.

parabola, left 5, down 1, vertical stretch of 2, Opens up, vertex at (-5,-1)

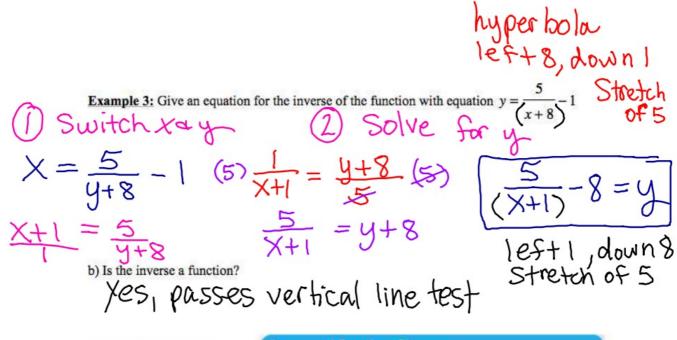
Give an equation for the inverse of the function.

(1) Switch
$$x \neq y$$


(2) Solve for y

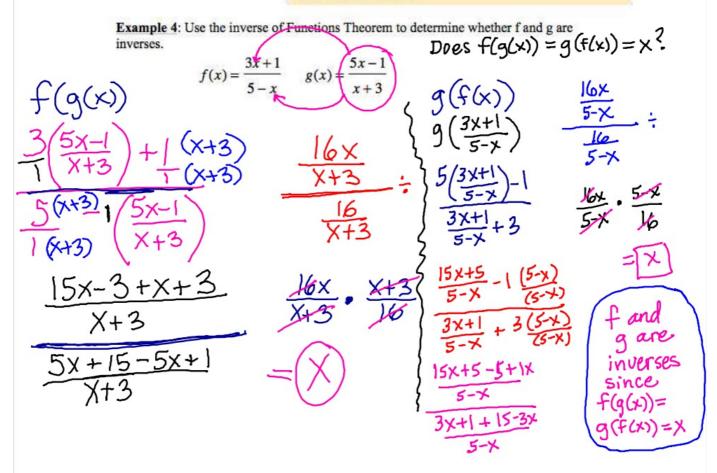
$$X = 2(9+5)^{2} - 1$$

$$X = 3(9+5)^{2} + 1$$


Square root
left |
down 5
horizontal
Stretch of 2
reflect over
X-axis

c) Based on your answer to Part a, describe the graph of the inverse of the function. Is the inverse a function?

Not a function, fails vertical line test


$$y_2 = \sqrt{((x+1)/2)} - 5$$

 $y_3 = -\sqrt{((x+1)/2)} - 5$
 $y_4 = X$

Inverse Functions and Composite Functions

Inverses of Functions Theorem

Given any two functions f and g, f and g are inverse functions if and only if f(g(x)) = x for all x in the domain of g, and g(f(x)) = x for all x in the domain of f.

